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The nonstationary stream of perfect fluid whose streamlines are stationary ( a 
quasi-stationary stream) is considered in a conservative field of external forces. 

Conditions under which a field of unit vectors can simultaneously represent the 
field of velocity directions of a barotropic quasi-stationary potential or vortex 

motion of a perfect fluid are determined. Comparison is made with the results 

cited in [1] for a stationary motion, and the absolute values of velocities of sta- 
tionary and quasi-stationary streams with common streamlines are compared in 
certain classes of motion. Comparison is also made with the results presented in 

[2] for a quasi-stationary stream of a perfect incompressible fluid. The range of 
the considered classes of unit vector fields, the arbitrariness of determination of 
the absolute value of velocity, and the acceleration and density potentials for a 
given velocity direction field are determined. It is assumed that the arbitrariness 
of solutions is determined in a class of analytic functions and that vector fields 
are analytic. 

1. We denote the unit vector of velocity direction by e and the vector of streamline 
curvature by k. A vector field is called holonomic if there exists a set of surfaces ortho- 

gonal to it [l]. The quantity H = div e is called the mean curvature of field e [3]. 
It is assumed that some of the vector lines of the field are not straight. 

Any holonomic field e may be considered to be the velocity direction field of a sta- 
tionary stream of perfect fluid [4]. For a potential quasi-stationary stream of perfect 

fluid the statement formulated in Theorem 2 in [2] for such fluid is valid. The geometry 
of velocity directions of such fields for a perfect incompressible fluid is different, since 

the incompressibility imposes an additional condition on the velocity direction field 
(condition 2 in Theorem 1 in [2]). For the quasi-stationary stream of perfect fluid we 
have the following theorems. 

Theorem 1. The absolute values of velocities 11’ and I’ of a stationary and quasi- 
stationary streams with common streamlines are related by the expression V = $?I’, 
where I$ is a function which at every instant satisfies the condition c 2: grad 11: = 6 . 

Since for a perfect incompressible fluid 4; depends only on time (note to Theorem 2 
in El), hence the arbitrariness of determination of the absolute value of velocity for a 



140 N.N.Gorbanev 

given velocity direction field is different, 
Theorem 2. The holonomic field whose field of curvature vectors is nonholono- 

mic can represent the velocity direction field only for a potential quasi-stationary stream. 

If fields e and k are holonomic, there exists , also, a quasi-stationary vortex stream 
whose velocity direction field is e and rot V is parallel to k x e. The class of holo- 
nomic unit vector fields whose curvature vector field is holonomic, consists of three func- 

tions of two arguments. Two functions of two arguments represent the arbitrariness of 
determination of the absolute value of velocity for a given field e . 

It follows from these theorems and [l] that the conditions which are satisfied by velo- 
city direction fields of potential and vortex quasi-stationary streams with common stream- 
lines are the same as for a stationary stream. The class of velocity direction fields com- 
mon to potential and vortex quasi-stationary streams of incompressible fluid is narrower 

(the second and fourth conditions of Theorem 3 in [Z] are added). 

Let us consider the class of motions of a perfect fluid for which the derivative of the 
absolute value of velocity in the direction of velocity is zero. A characteristic of such 
motion is that at any instant the absolute value of velocity of all particles of fluid along 
one and the same arbitrary streamline is the same, and for a stationary motion it is con- 
stant. For brevity we call such motions Class I motions, 

Theorem 3. A field of unit vectors e can represent the general field of velocity 
directions of stationary and quasi-stationary streams of Class I then and only then, when 
it is holonomic and its curvature vector field is potential, If Ii and 1C’ are the absolute 
values of velocities of Class I stationary and potential stationary streams with the same 

streamlines, respectively, then function V = Q (t) W f- c’, where Q (t) is an arbitrary 
function of time, can be taken as the absolute value of velocity I’ of any quasi-station- 

ary stream of Class I with the same streamlines, Conversely, the absolute value of velo- 

city I, of any quasi-stationary stream of Class I can be represented in the form I’ = 
J, lt) IV -1. 1~ ! where $1 (t) is a certain function of time, and l,’ and It’ are, respectively, 
the absolute values of velocities of some stationary and potential Class I streams with 

the same streamlines. The class of holonomic unit vector fields whose curvature vector 
field is potential consists of two functions of two arguments. 

The relationship between the absolute values of velocities in the case of Class I mo- 

tions of incompressible fluid is the same as above (Theorem 4 in @I), while the range 
of direction fields becomes narrower, since the condition of incompressibility introduces 
the additional requirement for the mean curvature of the velocity direction field to va- 

nish. 
l,et us consider the motions of a perfect fluid in which the total acceleration is ortho- 

gonal to velocity. For such motions the absolute value of velocity of every fluid particle 
is constant. 

Theorem 4. The velocity direction field of a quasi-stationary stream whose total 
acceleration is orthogonal to velocity can only be represented (except a rectilinear field) 

by field e which satisfies conditions: 
1) the curvature vector field k of field e is holonomic, and 

2) the following equality holds : 

k >; (2 grad In [(e x k.rot, 1;) 1 k 1 +I - (k X rot k) 1 k J -‘) = 0 (1.1) 

The class of such fields comprises four functions of two arguments, 
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2. The above results were obtained by analyzing the compatibility of the system of 

differential equations of hydrodynamics by the method of Kartan. 
Let a nonrectilinear field of unit vectors e be specified in some three-dimensional 

region of a three-dimensional Euclidean space, which is equivalent to specifying the con- 
gruence of lines. As in [2] we adjoin to every point which specifies the field the Frenet’s 
reference point of the field vector line passing through that point. Let e, = e, e2, e, be 

unit vectors of the tangent, the principal normal, and the binormal, respectively, and %I 
be the radius vector of that point. The differential forms o)ji and coefficients ni, bi 

and ci have the same meaning as in [l, 21. Then k = a,,ez. 
Let V = Ve, be the velocity of a perfect fluid stream. The system of hydrodynamic 

equations can now be written in the form of the following system of complete differen- 

tials : 
rip = pl’21 + I‘& -f p$lJ3 - {p3V I- $21’:: + p1.N) dt (2.1) 

(i’1; = r,o,’ -!- r,o* -1 V,o’ + V,dl (2.2) 

dq = I”a:jc:” + (I’* A- I.V,) co3 -+ vtdt (2.3) 

where the first equation is that of continuity and the third is Euler’s equation (cp is the 
acceleration potential and [j is the density). The second equality is an expansion of dV 
in terms of basic forms (1)’ =y 6X.ei and c&. 

The investigation of system (2.1) -(2.3) for compatibility can be reduced to the in- 
vestigation of its subsystem (2.2), (2.3), since for any fixed solution of the latter. Eq. 
(2.1) is in involution withrespect to p. ~1, ?* and ps. One arbitrary function of three argu- 
ments determines its existence. Because of this we investigate below the system (2.2). 

(2.3). 
Let us consider the potential quasi-stationary stream of perfect fluid. Since rot V = 

(b'~--.Qs I')e~-v~es -ki'(al-- &) e3, hence for a potential stream the system (2.2),(2.3) is 
of the form 

dV = I’a,o* + v,o3 -1 V,& (2.4) 
&p = I’%,o~ + (V, $- l’V3) 0s + tp& (2.5) 
v, = 3, v, = vu,, a, - b, = 0 (rot V = 0) 

The condition ai - h, = 0 implies that the velocity direction field of a potential 

quasi-stationary stream is holonomic [l]. Conversely, let the holonomic field of unit 
vectors e be specified. Differentiating externally system (2.4), (2.5), we obtain a quad- 
ratic system which is in involution with respect to V, V,, Vf and 91. This can be proved 

by constructing a regular chain of solutions by the method if Keler [5]. One arbitrary 
function of two arguments determines the existence of solution of system (2.4), (2.5). 

The absolute value of velocity V is determined by Eq. (2.4) with one arbitrary function 
of two arguments, while g, for any fixed V is determined by one arbitrary function of 
one argument. 

Thus any holonomic field e can represent the velocity direction field of a potential 
quasi-stationary stream of perfect fluid. It can, also, represent the velocity direction 
field of a potential stationary motion [4] the absolute value of whose velocity is deter- 
mined by an arbitrary function of one argument. 

Let a holonomic field e be specified. The absolute values of velocities W and IT of 
the stationary and quasi-stationary streams associated with that velocity direction field are 
determined by equations 

dW = IVa,oP f II’,03 (2.6) 
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and (2.4)‘ respectively. Let &$ = li;.?to” -+ y”tdt and 11’ be any solution of (2.6). Then 
IF’@ satisfies Eq. (2.4) l Conversely, if IV and I’ are solutions of Eqs, (2.6) and (2.4)) 
Ehen f 1’11’-1)1 = ( t’IY1), = 0: Theorem 1 is proved. 

Let US consider the stream of perfect fluid whose velocity direction field is holonomic, 
It follows from Eq. (2.3) and the condition ~1 I - b, = 0 of the field holonomy that 
l’, = 0. Hence rot V is parallel to e, and I’ (12~ - c3) (F’, - a,V) = 0. This implies 
that l‘, = ]‘a,, when a1 - cs # 0 , i. e, the stream is potential. Let now fir - e3 = 0, 
hence field k is holonomic, and it follows from system (2.2). (2.3) that 

Vf, + VI;, -; n,1’V, -+ I’,V, - a,l’t - I/’ ($3 + u*u3) - 2a,v1/3 = 0 

Taking this formula into consideration and extending Eq, (2.2) to I; = 0 , we obtain 

(2.7) 

Differentiating externally and substituting variables 

d I,‘.?2 = L1, dV,, = Lz, dVs3 = L3, dVt3 -+ i’df’,, -= 12” 

dytl -j- I’dVt, -I- 1’ (dVt3 -/- VdV,,) = L5, co1 = 0~’ 

02 = 01,2 + dt, co3 = a,$ + Vdt, dt - dt, 
we obtain a system in involution the existence of whose solution is determined by two 
arbitrary functions of two arguments, System (2.7) defines V tiith that arbitrariness, 
while function q for the obtained 1’ is determined by an arbitrary function of one argu- 
ment. 

Let US determine the range of the class of holonomic fields of unit vectors e, whose 
curvature vector field is holonomic. Since a, - 6, = 0 and 0, - r,, := U, hence 

External differentiation yields a system in involution the existence of whose solution is 

determined by three arbitrary functions of two arguments. Theorem 2 is proved, 
Let us prove Theorem 3. According to condition I’, =: 0. It is shown in [l] that the 

velocity direction field ll’e, of a stationary stream with IV3 = 0 satisfies the condition 
rot k X e -2 0, i,e, 0, - c:J I) and cn:J t u2nR : 0. Can such field e represent also 
the velocity direction field of a quasi-stationary stream with l’n -7 U? Let al - cQ = 0, 

a:,, 7 a2n3 = 0 and I ;I = 11. The system (2.2), (2.3) then assumes the form 

dl’ = I~,(01 -1 l’nO,’ + I.[d!, &p = r%7,oP ? I’& -1 qtdt (2.3) 
Let us consider the case of a nonholonomic field e. i.e. such that a, - I+ =+ 0. After 

external differentiation and solution by Kartan’s lemma, from (2.8) we obtain the rela- 
tionships 

I’t1 - I,t r 0, [.t2 L= Q,t;, f’t:~ .L- fi 

I’, = -_(3a,j-1 {(cl:,1 -?; c,n,i f’ -\ (al -.- bzi I--‘rtl 

]‘,f =.= \.t’l--‘-- (<&31 A- c,n,) (a1 - !I,)-‘IT’t 

Hence 
dirt Y I~ln:,o” + ( IYt’lV-” l - (n,ll -i r,a,) (nl - b,i-lI~I’t)dt 



Stationary and quasi-stationary streams of perfect fluid 143 

This implies that (as1 + c++) Vt = 0, hence n3, + r2aR = 0. In this case dI’,= l.tn,o~“+ 
I’tV-Vt, and external differentiation of this equation and its solution by Kartan’s lem- 
ma yields (a1 - 6,) I’[ == 0, i.e. lrl = 0. This proves that a quasi-stationary stream of 
Class I with such velocity direction field is not possible. 

Let now field e satisfy conditions 

(a1 - b?) = 0, ar - c3 = 0, u33 -t ata3 = 0 (2.9) 

By extending system (2.8) we obtain a system in involution the existence of whose solu- 
tion is determined by three functions of one argument and I’ is determined by two func- 
tions of one argument. Thus only fields which satisfy conditions (2.9). i. e. holonomic 
fields e whose curvature vector field is potential, can represent a velocity direction 

field which is common to stationary and quasi-stationary stream of Class I. The rela- 
tionship between the absolute values of velocities of stationary and quasi-stationary 

streams with common streamlines is derived in exactly the same manner as in Theorem 

4 in [Z]. Let us determine the range of the class of holonomic vector fields whose cur- 

vature vector field is potential. For that class of fields we have 

External differentiation yields a quadratic system in involution. By constructing a regu- 

lar chain of solutions we find that the range consists of two functions of two arguments. 
All statements of Theorem 3 are thus proved. 

Let us consider quasi-stationary streams whose total acceleration is orthogonal to velo- 
city, i.e. Vt + VV, = 0. In this case from (2.2) and (2.3) we obtain 

n, - c:< = 0, I’, = - (2&J-’ (unr c r,a,\ 1’~ 

I’, = - (Za,)-’ (a 33 + $Q) 1’ 

The relationship 

dI/ = - Pa,)-’ (a31 -t c,n,)l'd + I'?OJ? - (2a,\-- (nn3 + aln,) T’to3 + 

@3)-l (a33 + asa3) i”*dt 

implies that the velocity direction field of such stream must satisfy relationships 

{u;l (93 + u,u,)h = (h?)-’ (~31 f ~,a,) (o33 + a2n3) (2.10) 

{a;’ (u33 + %u3)33 = @a3’)-’ (~2~~ -+ a+~,)~, aI - c3 = 0 

If u33 + uza3 = 0, the stream is stationary, and conversely, if the stream is stationary, 

al - c3 = C, and a33 + u2u3 = 0 (see [ 11). For u 33 + u2u3 # 0 conditions (2.10) can 
be represented in the form of equality (1.1) and k.rot k = 0. In this case 

,’ = -20, (a,, + u~u~)-~ (t .-;- N)-l 

where N is any function which satisfies the condition dN = A’20z. The class of fields 
which satisfy conditions (2.10) contains four functions of two arguments. This can be 
proved by constructing the regular chain of solutions for the system which defines this 
class of fields. Theorem 4 is proved. 
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We consider the two-dimensional steady flows of a viscous incompressible fluid 
with viscosity depending exponentially on the temperature. In contrast to the 
numerical methods for solving this problem [l], we reduce the nonlinear system 
of equations describing the flow to an infinite sequence of linear equations of 

elliptic type by means of an expansion in the small parameter appearing in the 
exponent. We construct a majorizing equation for which the existence of positive 
solutions guarantees the uniform convergence of iterations on a neighborhood of a 

zero value of the parameter. As an illustration we study the flow of a viscous 
fluid in a cylindrical tube with a heat source present. 

1. Consider the steady two-dimensional flow of a viscous incompressible fluid 
with the temperature-dependent viscosity given by the Reynolds relation 

1’ !‘,, z c -a7’ 

The system of differential equations of motion, continuity, and energy has the follow- 
ing form [Z] upon the introduction of a stream function and omission of the inertial and 
dissipative 

(1.1) 

The geometrical and physical flow parameters are assumed to be dimensionless,being 
referred to characteristic scaling parameters : the length I,, the difference of tempera- 


